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Spanning Trees
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Spanning Trees

Definition
A spanning tree for an undirected graph is a sub-graph which includes all vertices

but has no cycles.

Example: There can be several spanning trees for a graph. Figure (i) shows a sample graph.
Figure (ii) depicts some of the trees for the graph
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TI 72 73 T4

(i) Sample Graph (ii) Spanning Trees

» Each spanning tree includes a/l the four vertices (v1,v2,v3,v4) of the parent graph

» Spanning trees can be generated by depth-first—search and breadth-first-search
procedures.
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Minimum Spanning Tree

Definition

A weighted undirected graph can have several spanning trees. One of the spanning trees
has smallest sum of all the weights associated with the edges. This tree is called minimum

spanning tree (mst).

Example :Figure shows a sample weighted graph, and some of the spanning trees, with
total weight of edges for each tree. The tree T1, with smallest total weight is the minimum
spanning tree. It is shown with vertices colored red
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10+20+40=70
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(i) Weighted graph

(i) Spanning Trees T1,T2,73,T4
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Minimum Spanning Trees
Applications

Minimum spanning trees have many practical applications. Some typical examples are:

» A telephone network can be configured, using minimum spanning tree, so that
minimum cable length is used.

o The air travel routes can be selected so that the travel time or travel cost is least.
» A computer network can be set up with minimum routing distance

» Linking a group of islands with bridges so that total bridge span length is minimum

» Two important algorithms for creating a minimum spanning tree for a weighted graph,
are Kruskal’s algorithm and Prim’s algorithm, named after their inventors.
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Kruskal’s Algorithm

Graph Algorithms-I1 / 1IU 2008/ Dr.A.Sattar /7



Minimum Spanning Tree
Kruskal’s Algorithm

The Kruskal ‘s algorithm works as follows:
Step # 1: Remove all edges of the graph
Step #2: Arrange edges according to their weights
Step # 3: Select an edge with least weight

Step #4: Attach the edge to the corresponding vertices, if it does not form a cycle;
otherwise, drop the edge

Step #5: Repeat steps 3 to 4 until all the edges have been processed (added or
dropped)

» Kruskal’s algorithm is categorized as greedy, because at each step it picks an edge
with smallest weight.

» The algorithm can be implemented in several ways. Generally, a priority
queue is used to store graph edges, so that, starting with the smallest weight , edges are
extracted in order of their increasing weights.
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Kruskal’s Algorithm

Example

In order to examine the working of Kruskal’s algorithm for building a minimum spanning
tree consider the sample weighted undirected graph shown in the figure below. The
number attached to the edges are the weights.
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» The steps for growing the minimum spanning tree are elaborated in the next set of figures
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Kruskal’s Algorithm Example

(1)In order to extract edges

with increasing weights, the
vertices forming edges of the
graph and the corresponding
weights are stored in a priority
queue. In the figure, the edges
are shaded green, and the
COI‘reSpondlng WelghtS are i0 12 14 14 15 17 18 19 28 29 30 32 39 40 45 45 A7

shaded red. The tree set T is A NS N N TR N N CE N I N I s e
_empiy.

b | k i ¢ j e kK j k i kK j i d h j

(2) The edge (e,f,8 )is extracted
from the priority queue. It is
added to the spanning tree. In

the diagram an added edge is
shown in red color. The
corresponding vertices have
red background . At this stage,
the tree set 1s T={(e,f,8);

15 117 18 19 28 2% 30 32 33 40 45 45 47 50 55

b 4] d T a 4] a ] h c [ [+] i T g

c j e k j kK i kK j i d h j @ k
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Kruskal’s Algorithm Example

(3) The edge (a,b,10 )is
extracted from the priority
queue. It does not form a
cycle with the existing tree

edge. The edge is added to the
spanning tree. The total

weight of edges 1s /8. The tree
SGt IS T={(e2f"8), (a,b,10)} 12 14 14 15 1r 18 1% 28 2% 30 32 45 45 47 50 55 5T

e e h b b d f a h a i [ g i f g d

i kK i e | e k | kK i kK j j d h i g k j

(4) The edge (e,j, 12 )is extracted
from the priority queue. It does
not form a cycle with any of the
tree edges. The edge 1s added to
the spanning tree. The total
weight of edges 1s 30. The tree
set is T={(e,f,8), (a,b,10),

(e, 12)}

12 14 14 15 117 18 1% 28 29 30 32 39 40 45 45 47 50 55

] e h 4] b d f a h a i h c c g i T g
i k i c i e k i k i k i i d h i [+ k
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Kruskal‘s Algorithm Example
— SR

(5) Edge (e,k, 14 )is extracted
from the priority queue. It does
not form a cycle with any of the
existing edges of the tree. The
edge 1s added to the spanning
tree. The accumulative weight
of edges is 44. The tree set is

j11=={?2?L,;ég), (21’15,11(2)’ (i?zi;JIJZ), 1: 1: 1: 1: 1: :: i? i: i: 12 1? 1? 1? 1: tl i: i: i:
(2?,]&)41‘1)}’ k i c i e k i k i k [] i d h i g k i

(6) Edge (h,i, 14 )is extracted
from the priority queue. It does
not form cycle with any of the
tree edges. The edge 1s added tJ
the spanning tree. The total
weight of edges is 8. The tree
set is T={(e,f.8), (a,b,10),
(e),12), (e,k,14), (h)i,14)}

14 15 17 18 19 28 2% 30 32 389 40 45 45 47 50 55

h b b d f a h a i h c c a i f ]

‘ i © | e kK | kK i Kk i i d h i @ k
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Kruskal’s Algorithm Example

(7) The edge (b,c, 15 )is |
extracted from the priority
queue. It does not form a cycle
with any the tree edges. The
edge is added to the spanning
tree. The total weight of edges
1s 73. The tree set is T={(e,f,8),
(a,bylo), (e,j,]Z), (eyk,14), 15 17 18 19 28 29 30 32 39 M0 45 45 4T 50 55 &7
(h,i,14), (b,c,15); b b d f a h a j h © ¢ g i f g d

c j e k j k i k j j d h i @ k j

(8) The edge (b, j,17) 1s
extracted from the priority
queue. It does not form a cycle
with any of the existing tree
edges. The edge is added to the
spanning tree. The total weight
of edges is 90. The tree set is

T={(e£8), (a,b,10), (e,12),

(e, k’l 4)’ (h, i, 1 4), (b’ c, 1 5)’ 17 18 19 28 29 30 32 39 40 45 45 4T 50 55 57
. b d f a h ] i h [ c g i T g d
(b’-] ’ 1 7) } i & kK i kK i Kk ij i d h i @ k i
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Kruskal’s Algorithm Example
e ST

(9) The edge (d,e, 18. ) 1s
extracted from the priority
queue. It does not form cycle. It
is added to the tree. The total
weight of edges 1s 108. The
tree set 1s T={(e,f,8), (a,b,10),
(ej,12), (e 14), (h,i,14),
(b,c,15), (b, .,17), (d,e,18)} 18 19 28 29 30 32 39 40 45 45 47T 50 55 57

d T a h a i h [ [ g i Li g d

e k j k i k j i d h j @ k j

(10) The edge (£,k, 19 ) is
extracted from the priority
queue. It forms a cycle with
edges (k,e,14) and (e, £,8). The
extracted edge is shown with
bold green line in the figure.
The cycle is identified by the
arrows.

19 28 29 30 32 39 40 45 45 47 50 55 57

T a h a ] h [ [+ g i f g d

‘ k i k i k i [] d h i 1] k i
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Kruskal’s Algorithm Example

(11) The extracted edge is
dropped. It is marked by
broken line between the
vertices k and f

19 28 2% 30 32 3% 40 45 45 47 50 255 57

f a h a ] h [ c [+] i T [+] d

k i k i k j j d h i @ k j

(12) The edge (a,j,28) 1s
extracted from the priority

queue. It forms cycle with

the edges(j,b,17) and

(b,a, 10) which form part of
the spanning tree.

28 29 30 32 39 40 45 45 4F 50 255 AT

a h a j h © ¢ g i f @g d

I k i k j J d h j g k |
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Kruskal’s Algorithm Example
— SR

(13) The edge (a,j,28) 1s
excluded from the tree. It is
shown with broken line in
the figure.

28 29 30 32 39 M 45 45 4F 50 55 5T

a h a j h e e g i f @g d

i k i k i i d h i 1] k i

(14) The edge (h,k,29) 1s
extracted from the priority
queue. It does not form a

cycle with any of the tree
edges. It is, therefore, added

to the tree. The total weight

of edges 1s /37. The tree set

is T={(e,f,8), (a,b,10),

(e,j,IZ), (e,k,14), (h,l,14), 29 30 32 39 40 45 45 47 50 55 57
(b,c,15), (b,),17), (d,e,18), n . i "' S ' LI 'i'
(k29 L
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Kruskal’s Algorithm Example

(15)The edge (a,i,30) 1s
extracted from the queue. It
forms a cycle with the tree
edges (i,h,14), (h,k,29),

(ke 14), (ej,12), (j.b,17),
(b,a,10). The extracted edge

is shown with bold green line
in the figure.

50 55 AT

Li g d

(16) The edge (a,i,30) is
excluded from the tree. It is

marked with a broken line
in the figure

45 45 47 50 55 &7

a8 § h e t© @§g i f @g d

‘ i i i d h | @8 k |

Graph Algorithms-II / [IU 2008/ Dr.A.Sattar /17



Kruskal’s Algorithm Example
o ST

(17) The edge (j,k,32) 1s
extracted. It forms cycle
with tree edges(k,e, 14) and
(e,j,12). The edge 1s
depicted with a bold green
line in the figure.

32 39 40 45 45 47 50 55 57

i h [ [ g i Li g d

k j i d h j @ k |

(18) The edge (j,k,32) is

excluded from the
spanning tree. It 1s shown

with broken line in the
figure

32 33 40 45 45 4F 50 55 57

i h e e g i f g d
k 1 1 d h |J g k |
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Kruskal’s Algorithm Example
- ST

(19) The edge (h,j,39) is
extracted from the queue. It
forms a cycle with the tree
edges (j,e, 12), (ek, 14),

(k,h,29). The cycle is identified
by arrows in the diagram

33 40 45 45 4F 50 55 57

h ¢ c g i f g d

i i d b j g k |

(20) The edge (A, j, 39) is
excluded from the spanning
tree configuration. It is
depicted by broken line in

the diagram

33 40 45 45 4Ff 50 55 &7

h c c [+] i T [+] d

| i i d h i g k j
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Kruskal’s Algorithm Example

(21) The (c,j,40) is extracted
from the queue. It forms cycle
with the tree edges (j,b,17) and
(b,c,15). The cycle is identified
by arrows in the figure. The
extracted edge is shown with
bold green line

(22)The edge (c,j,40) 1s
excluded from the existing
tree configuration. It 1s
shown with broken line in
the figure

40 45 45 4F 50 55 57

c c [+] i T [+] d

| d h j g k

40 45 45 447 50 55 57

[ [ g i Li g d

i d h j g k |
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Kruskal’s Algorithm Example
- R

(23) The edge (c,d,45) is
extracted from the queue. It
forms a cycle with the tree
edges (d,e, 18), ((ej,12),

(,b,17), (b,c,15). The cycle is
identified by arrows. The
extracted edge is shown with

bold green line in the diagram. #® 45 4 S0 85 &
[ a i f [+ ] d

d ] i a k |

(24) The edge (c,d,45) 1s
discarded. It is depicted by
broken line in the figure

45 45 47 50 55 &7

[ g i T g d

d h i 1] k |
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Kruskal’s Algorithm Example

(25)The edge (g,h,45) is |
extracted from the queue. It
does not form a cycle with any
of the tree edges. The edge is
added to the tree. The total
weight of edges 1s /82.The

tree set is T={(e,f,8), (a,b,10),
(e, 12), (e 14), (hyiv14), r——
(b,C,15), (bzlyl 7), (d,e,18)) g 1 f g d
(h,k,29), (2,1,45)}

h j 8 k |

(26)The edge(i,j,47) 1s
extracted from the queue. It
forms a cycle with tree

edges (j,e, 12), (ek, 14),

(k,h,29), (h,i,14). The cycle
is marked by the arrows.
The extracted edge is shown
with bold green line in the

47 50 55 &7
ﬁgure i f g d

I 8 k ]
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Kruskal’s Algorithm Example

(27) The edge (i,j,47) 1s
dropped. It 1s marked by a
dotted line in the figure.

47 50 55 &7

i f g d

(28) The edge (f,g,50) 1s
extracted from the queue. It
forms a cycle with the tree
edges (g,h,45), (h,k,29),
(ke 14), (ef.8). The cycle is
identified by arrows. The
extracted edge is shown by
bold green line in the figure

50 55 &7

T [+] d

B k i B
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Kruskal’s Algorithm Example
S R

(29) The edge (1,g,50) is
excluded from the tree
configuration. It is marked by
dotted line in the figure

(30)The edge (g,k,55) 1s
extracted from the queue. It
forms cycle with the tree

edges (k,h,29) and (h,g,45).
The cycle is marked by the
arrows. The extracted edge
is shown with bold green
line
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Kruskal’s Algorithm Example
Sl -Xample

(31) The edge (g,k,55) is
dropped. It 1s marked by
dotted line in the figure

(32) The edge (d,j,57) is |
extracted from the queue. It
forms a cycle with tree
edges (j,e,12) and (e,d, 18).
The cycle is marked by |
arrows. The extracted edge
1s shown with bold green
line in the figure




Kruskal’s Algorithm Example
S R

(33) The edge(d,j,57) is
excluded from the tree. It is
shown with broken line in
the figure.

(34) After removing the
edge(d,j,57), the priority

queue becomes empty. The
Kruskal’s algorithm
terminates.

0., oW 39,

o‘ . 14

Empty Priority Queue
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Kruskal’s Algorithm

Example

The Minimum Spanning Tree (MST), generated by the Kruskal’s algorithm, is shown
below. The dotted lines indicate the edges that are in the sample graph but excluded from
the MST. The tree includes all of the vertices in the original graph. It does not have any
cycles. The total weight of all the tree edges is 182.

MST edges = ccececee Dropped edges
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Kruskal’s Algorithm

Implementation

It follows that the Kruskal’s algorithm is implemented in two phases

(1) Sorting edges in non-decreasing order
(2) Constructing spanning tree (a sub-graph which has no cycles )

» In actual implementation, the edges can be sorted by using an efficient algorithm such as
Quick sort. Alternatively, a Priority Queue can be used. The edges are retrieved in non-
decreasing order by dequeue operation, as shown in the preceding example.

» For detection of cycles Union Sets are used
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Kruskal’s Algorithm
Detecting Cycles

To check whether or not an extracted edge forms a cycle, a Union Set can be used. A Union
Set 1s defined as a set of disjoint sets of vertices in a graph

Example : Consider the set of vertices V={a ,b, ¢, d ,e} 1n a sample graph. The Union Set
UV is defined as the set consisting of members {a}, {b}, {c}, {d}. In set notation U}V can be
denoted as sef of sets, as under

UV={{a}, {b}, {c}, {c}, {d}, {e} |

» The rule for accepting or discarding an extracted edge is as follows. Suppose that an
edge (u, v) 1s extracted from a priority queue. Let UV be the Union Set of vertices

(i) If the vertices u, v belong to the same member S of the Union Set UV
then the edge (u, v) forms cycle, and discarded

(i) If the vertices u, v belong to two different members, S1 and S2, of the
Union Set UV then the edge (u, v) is accepted. Further, the sets SI and

S2 are merged together to form a single set S which is placed in the
Union Set UV
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Detecting Cycles
Example

Suppose at any stage of the execution of Krukal’s algorithm , the UV Union Set of vertices
consists of members {a}, {b}, { c, e}, {d},ie UV={{a}, {b}, {c e}, {d}}. Consider the
following possibilities:

(1) Suppose an edge (e, d) 1s extracted from the priority queue. Since vertices e, d
belong to two different members { ¢, e! and { d} of UV, the edge (e, d) does not form a cycle.
The sets {e, d} and {d } will be merged into the set { ¢, d, e} which will replace the sets
{ c,e} { d} in the original set UV. Thus, the updated UV would be UV={ {a}, {c, d e} }

(2) Assume again that an edge (c, e) is extracted. Since the vertices e and d belong to
the same set {c, d, e} of the UV, the edge (c, e ) will be discarded

(3) Again, assume that the edge (a, b) is extracted. Since the vertices a, b belong to
different sets, the corresponding disjoints set, namely, {a}, {b} will be merged. Thus, the
updated UV would be UV={{a, b}, {c, d, e} }.

(4) Next, assume that edge (b ,c) 1s extracted, Since b belongs to {a,b} and c belongs to
{c, d, e} the sets {a, b} and {c, d, e} would be merged i.e UV={aq, b, ¢, d, e}
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v6

Kruskal’s Algorithm
Using Set for MST

90 ; 90
vl 02 4 v2
30 YO 40 10 30 &0 y 10
55 7 0 Y v6 55 v7 LN v
35 50 w 65 35 >0 w 65
v5 os o v3 vd
Edge Weight Edge Action uv={ {v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}}
(v2,v3) 10 (v2,v3) added {{v1}, {v2, v3}, {v4}, {v5}, {v6}, {v7}}
(v1,v7) 20 (v1,v7) added { {v1,v7}, {v2,v3},{v4}, {v5},{v6}}
(v1,v6) 30 (v1,v6) added { {v1,v6,v7}, {v2,v3},{v4},{v5}}
(v5,v6) 35 (v5,v6) added {{v1, v5,v6,v7}, {v2,v3},{v4}}
(v2,v7) 40 (v2,v7) added {{v1,v2,v3,v5,v6,v7},{v4}}
(v5,v7) 50 (v5,v7) rejected V5,v7 already in the first set
(v6,v7) 55 (v6,v7) rejected V6,v7 already in the first set
(v3,v4) 65 (v3,v4) added { {v1,v2,v3,v4,v5,v6,v7} }
(v3,v7) 70 (v3,v7) rejected V3,v7 already included
(v4,v7) 80 (v4,v7) rejected V4,v7 already included
(v1,v2) 90 (v1,v2) rejected V1,v2 already included
(v4,v5) 95 (v4,v5) rejected V4,v5 already included
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Kruskal’s Algorithm

Implementation

Following is pseudo code for Kruskal’s algorithm.. The Union Set UV initially holds vertices of the
graph. The input to the procedure includes a matrix W of edge weights. A priority queue is created to
hold the edges and weights.

MST-KRUSKAL(G,W)

1 T—g W [nitialize Minimum Spanning Tree

2 UVe—ygp » [nitialize Union set UV

3 for each vertexv &€V

4 doUV—UV U {Vv} » Add Vertex sets to union set UV

5 foreach (u,v) € E » Create a priority queue of edges and weights

6 do ENQUEUE(Q,u,v,w) » weights are keys (priorities)

7 while |UV| >1 do » Continue until all vertices form a single set of cardinality 1
8 (u, v) —DEQUEUE(Q) » Remove an edge (u,v) from the queue

9 if u, v belong to different sets US1,US2 & UV

10 then UV UV - USI » remove set USI from UV

11 UV=UVv - US2 » remove set US2 from UV

12 Uv«—Uv J(USI |JUS2) W Join sets USI and US2 , add the union to UV
13 T<Tu v » Add the selected edge to the spanning tree
14 return T

Kruskal Visualization
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Kruskal’s Algorithm Visualization

Reset the graph to the initial state

“Wisuzalization O stop
' Sloun Reset Graph Draw Graph

Uibedium

[# F ast

DEQUEUING: Edqge(F,H)=34 added to MST

S — _“}l

Priority Queue
WL Edge Wi Edge Wi Edge

il

&4

Elmle|o|Gmo O =0 e m & 0 m = fm
Ol=|0|=|m[O|@|=|~|m@|m[T |2 |m|&]x
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Analysis of Kruskal’s Algorithm

Running Time

Assume that edges are processed by using priority queue, graph is represented by linked
lists, and Union Set is used to detect cycles. The main contributions to the running time are
(1) T,,, , timeto sort edges
(2) T,,, time to initialize the sets
(3) T, timeto scan linked lists

It was shown earlier that the time to sort # data items, using quick sort is n [g n. Since edge
set contains |E| edges, time to sort edges will be

Tsort: O(|E| lg| E|)
The time for initialization of sets will be

T. = O(|V])., where | V] 1s number of vertices in the graph
The total time to scan the linked lists representing the graph is equal to number of edges in
the graph. This time 1s at most

70 =O(E|)

Thus, total running time is O(|E|. Ig| E|) + O(|E|)+O(|V]). Ignoring |E| compared to  |E|.|lg

|E|, the running time for Kruskal’s algorithm is
Tkruskal= O(IEl'lg |EI) +0(I VI)
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Prim’s Algorithm
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Prim’s Algorithm
Strategy

The Prim’s algorithm is an alternative method for creating minimum spanning tree for

a weighted undirected graph. Unlike the Kruskal’s algorithm, it makes a systematic
selection of vertices. It proceeds by choosing some arbitrary initial vertex, and then
examines all neighbors. It selects the neighbor which has the shortest distance. Next, the
neighbors of selected vertices are examined for shortest link. This process is continued till
all the vertices have been explored. The selected shortest links form minimum spanning
tree.
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Prim’s Algorithm
Procedure

Let V be the vertex set for a graph G. Let T be the minimum spanning tree for G. The Prim’s
algorithm proceeds as follows:

Step #1: Select some vertex s in 'V, as the start vertex.

Step # 2: Add vertex s to an empty set S. Remove s from V.

Step # 3: Repeat Step #:4 through Step #:6 until the set V is empty.

Step # 4: Examine all vertices in S which are linked to vertices in V.

Step #5 :Choose the vertex u in V which has the minimum distance from vertexv in S.

Step #6: Remove vertex u from V and add it to S. Move edge (v ,u) to T.
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Prim’s Algorithm

Example

In order to study the working of Prim’s algorithm, consider the weighted undirected graph
shown in the figure below

45 18
c (d) e
15
57 8
40
o 12 14
17

a 28 \2/9
/ 39 29
30 47 55
14 45
-

The working of algorithm is illustrated by the next set of figures with exploratory notes
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Prim’s Algorithm

Example
(1) Figure shows a sample weighted
undirected graph. The vertex set for the
graphis V={a, b,c,d, e, f, g h, i, J, k}. A set
S 1s used to store vertices, which are
selected to form minimum spanning tree.
Another set 7'is defined to contain the edges

of minimum spanning tree. Initially, S'and T
are empty: S={}, T={}

(2) First, vertex a is selected for the start of
Prim’s algorithm. In the figure it is shaded
red. The selected vertex is removed from set
J and placed in set S. Thus,

V={b,c def g hij k}

S={a}
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Prim’s Algorithm
Example

(3) Inttially, V={b, c,d, e, f, g h, i, J, k}
S={a)}

The distances of vertices in set S to the
linked vertices in set V are as follows:
a—b=10 (minimum)

a—j=28

a—i=30

The minimum distance 10 1s from a to b

(4) Vertex b, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (a,b,10) of MST is placed in
set 1"

V={c,d e f g h ij k}
S={a, b},

7= {(a,b,10)}

The total distance so far is/0
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Prim’s Algorithm

Example

(5) Initially, V={c, d, e, f, g h, i, j, k}
S={a, b}

The distances of vertices in set S to the
linked vertices in set V are as follows:
a—j=28

a—i=30

b—j=17

b—c=15 (minimum)

The minimum distance /5 1s from b to ¢

(6) Vertex ¢, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (b,c,15) of MST is placed in
set 1"

V={d, e f g h ij k}

S={a, b, ¢},

1={(a,b,10), (b,c,15)}

The total distance so far is 25
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Prim’s

(7) Initially, V={ d, e, f, g h, i, ], k}
S={a, b, ¢}

The distances of vertices in set S to the
linked vertices in set V are as follows:
a—j=28, a—i=30

b—j=17 (minimum)

c—d= 45, c—j=40

The minimum distance 17 is from b to j

(8) Vertex j, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (b,j,17) of MST is placed in
set 7'

V={d, e [ g h, i k!

S={a, b, c, j}

T={(a,b,10), (b,c,15), (b,j,17)}

The total distance so far is 42

Example

Algorithm
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Prim’s Algorithm

Example

(9) Initially, V={d, e, f, g, h, i, k}
S={a, b, c, j}

The distances of vertices in set S to the
linked vertices in set V are as follows:
a—i=30, c—d=45,

j—d=57, j—e=12 (minimum),
j—k=32, j—i=47,

j—h=39

The minimum distance 12 is from j to e

(10) Vertex e, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (j,e,12) of MST is placed in
set 1"

V={d, f, g h, i k}

S={a, b, c, e, j}

T={(a,b,10), (b,c,15), (b,j,17), (j.e,12)}

The total distance so far is 54
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Prim’s Algorithm

(11) Initially, V={d, 1, g, h, I, k}
S={a, b, c, e, j}
The distances of vertices in set S to the
linked vertices in set V are as follows:
a—i=30, c—d=45,
j—d=57, j—k=32,
j—i=47, j—h=39
e—d=18, e—f=8 (minimum)
e—k=14

- The minimum distance § is from e to f

(12) Vertex f, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (e,f,8) of MST is placed in
set T':

V={d, g h, ik}

S={a, b, c, e [ j}

T={(a,b,10), (b,c,15), (b,j,17), (j.e, 12),

(e.f.8)}
The total distance so far is 62

Example
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Prim’s Algorithm

Example

(13) Inttially, V={d, g, h, i, k}
S={a, b, c e f j}
The distances of vertices in set S to the
linked vertices in set V are as follows:
a—i=30, c—d=45,
j—d=57, j—k=32,
j—i=47, j—h=39
e—d=18, f—k=19
f—g=50, e—k=14 (minimum)
- The minimum distance /4 is from e to k
(14) Vertex k, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (e, k,14) of MST is placed in
set 1"
V={d, g, h, i}
S={a, b, c e ] k}
1={(a,b,10), (b,c,15), (b,j,17), (je 12),
(ef,8), (ek, 14)}

The total distance so far is 76
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Prim’s Algorithm

Example

(15) Initially, V={d, g, h, i}

S={a, b, c e f ] k}

The distances of vertices in set S to the
linked vertices in set V are as follows:
a—i=30, c—d=45,

j—d=57, j—oi=47,

Jj—h=39, e—d=18 (minimum)
f—g=50, k—h=29, k—g=55

The minimum distance /4 1s from e to k

(16) Vertex d, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (e,d,18) of MST is placed in
set 1"

V={g h, i

S={a, b, c d e, f]j k}

T={(a,b,10), (b,c,15), (b,j,17), (j.e 12),
(e.f,8), (e,k,14), (e,d 18)}

The total distance so far is 94
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Prim’s Algorithm

Example

(17) Imitially, V={g, h, i}
S={a, b, c,d e ]k
The distances of vertices in set S to the
linked vertices in set V are as follows:
a—i=30,

j—i=47, j—h=39,

f—g=50, k—h=29 (minimum)
k—g=55

The minimum distance 29 1s from k to &

(18) Vertex A, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (k,h,29) of MST is placed in
set 1"

V={g i}

S={a, b, c d e hj k}

1={(a,b,10), (b,c,15), (b,j,17), (j,e 12),
(e.f,8), (e,k, 14), (e,d 18), (k,h,29)}
The total distance so far is 7123
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Prim’s Algorithm

Example

(19) Initially, V={g, i}
S={a, b, c,d e f hj k}
The distances of vertices in set S to the
linked vertices in set V are as follows:
a—i=30, j—i=47,

h—i=14 (minimum)

f—g=50, h—g=45

k—g=55

The minimum distance 30 1s from k to &

(20) Vertex i, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (h,i,14) of MST is placed in
set 1"

V={ g/

S={a, b, c, def hij k}

T={(a,b,10), (b,c,15), (b,j,17), (j.e 12),
(e.f,8), (e,k,14), (e,d 18), (k,h,29),(h,i,14)}
The total distance so far is /37
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Prim’s Algorithm

Example

(21) Inmitially, V={ g}
S={a, b, c,d e f hj k}
The distances of vertices in set S to the
linked vertices in set V are as follows:
f—g=50,

h—g=45 (minimum)

k—g=55

The minimum distance 30 1s from k to &

(22) Vertex g, which has the minimum
distance, 1s selected and placed in set S.
Thus, The edge (h,g,45) of MST is placed in
set 7.

Set V'is empty. S={a, b, c, d, e, f, g, h, i, j, k}
T={(a,b,10), (b,c,15), (b,j,17), (j.e, 12),
(e.},8), (e,k 14), (e,d,18), (kh,29), (h,i, 14),
(h,g,45)}. The total distance so far is /82
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Prim’s Algorithm

Implementation
The MST-PRIM method implements Prim’s algorithm for a graph G. A start vertex s 1is
passed to the method.

MST-PRIM(G, s)
1 T— ¢ » T holds minimum spanning tree

2 S—o » S contains vertices added to the tree

3 §«S U{s} » Start vertex is added to S

4 VV-{s} » Start vertex is removed from V

5 whileV+¢do

6 d <« oo Pdis used to store minimum distance . It is initialized to some very large number
7
8

for each vertexuec S do » Select a vertex uin S

for each vertex v € Adj[u] do W Examine all vertices which are linked to u
9 ifd>w(u,v) » Check if the vertex u has shorter distance
10 then d—w(u,v) » [f yes, replace d with weight w (u, v)
11 wle—v » store vertex vin wl
12 w2 «—u W store vertex u in w2
13 V<V-{wl} » remove vertex wl from V
14 S «— SU{WwI} » add vertex wl to S
15 T<T | {wlw2)} » Add edge (wl,w2) to T
16 return T
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Analysis of Prim’s Algorithm

Running Time

The while loop 1n the implementation is executed |V]-1 times, where | V] represents the
number of vertices in the graph. In each iteration, distances of a given vertex from other
vertices 1s explored at most |V|-1 times, in worst case. Thus, the running time of Prim’s
algorithm is
Tprim - O((| V|_])(| V|_]))

=01V

= O(n?), n being the total number of vertices in the graph.

A more efficient implementation of Prim’s algorithm ( Ref. T.Cormen et al ) uses a min-heap
to extract an edge with smallest weight from a given vertex. In this case, it can be shown
that the running time is
L =OVIgV+EIgV)
=OEY)
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