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Graph Algorithms
Topics

• Spanning Trees

• Minimum Spanning Trees

• Kruskal’s Algorithm for MST and  Analysis 

• Prim’s Algorithm and  Analysis
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Spanning Trees
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Spanning Trees
Definition

A spanning tree for an undirected graph is a sub-graph which includes all vertices
but has no cycles.

Example: There can be several  spanning trees for a graph. Figure (i) shows a sample graph. 
Figure (ii) depicts some of the trees for the graph 
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(ii) Spanning Trees(i) Sample Graph

Each spanning tree includes all the four vertices (v1,v2,v3,v4) of the parent graph

Spanning trees can be generated by depth-first–search and breadth-first-search
procedures. 
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Minimum Spanning Tree
Definition

A weighted undirected graph can have several spanning trees. One of the spanning trees  
has smallest sum of all the weights associated with the edges.  This tree is called minimum 
spanning tree (mst).

Example :Figure shows a sample weighted graph, and some of the spanning trees, with 
total weight of edges for each tree. The tree T1, with smallest total weight  is the  minimum 
spanning tree. It is shown with vertices colored red
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Minimum Spanning Trees
Applications

Minimum spanning trees have many practical applications. Some typical  examples are:
: 

• A telephone network can be configured, using minimum spanning tree,  so that 
minimum cable length is used.

• The air travel routes can be selected so that the travel time or travel cost is least.

• A computer network can be set up with minimum routing distance

• Linking a group of islands with bridges so that total bridge span length is minimum  

Two important algorithms for creating a minimum spanning tree for a weighted graph,   
are Kruskal’s algorithm and Prim’s algorithm, named after their inventors.
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Kruskal’s Algorithm



Graph Algorithms-II / IIU 2008/ Dr.A.Sattar /8

Minimum Spanning Tree
Kruskal’s Algorithm

The Kruskal ‘s algorithm works as follows:

Step # 1: Remove all edges of the graph 

Step #2: Arrange edges according to their weights

Step # 3: Select an edge with least weight

Step #4: Attach the edge  to the corresponding  vertices, if it does not form a cycle;
otherwise,  drop the edge

Step #5: Repeat steps 3 to 4 until all the edges have been processed   (added or 
dropped) 

The  algorithm can be implemented in several ways. Generally, a priority
queue is used to store graph edges, so that, starting with the smallest weight ,  edges are 
extracted  in order of their increasing weights.  

Kruskal’s algorithm is categorized as greedy, because at each step it picks an edge
with smallest  weight.
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Kruskal’s Algorithm 
Example

In order to examine the working of Kruskal’s algorithm for building a minimum spanning 
tree consider the sample weighted undirected graph shown in the figure below. The 
number attached to the edges are the weights.
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The steps for growing the minimum spanning tree are elaborated in the  next set of figures 
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Kruskal’s Algorithm Example

(1)In order to extract edges 
with increasing weights, the 
vertices forming  edges of the 
graph and the corresponding 
weights are stored in a priority 
queue. In the figure, the edges 
are shaded green, and the 
corresponding weights are 
shaded red.  The tree set T  is 
empty.

(2) The edge (e,f,8 )is extracted 
from the priority queue. It is 
added to the spanning tree. In 
the diagram an added edge is 
shown in red color. The 
corresponding vertices have 
red background .  At this stage, 
the tree set is T={(e,f,8)}
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Kruskal’s Algorithm  Example

(3) The edge (a,b,10 )is 
extracted from the priority 
queue. It does not form a 
cycle with the existing tree 
edge. The edge is added to the 
spanning tree. The  total  
weight of edges is 18. The tree 
set is T={(e,f,8), (a,b,10)}

(4) The edge (e,j,12 )is extracted 
from the priority queue. It does 
not form a cycle with any of the 
tree edges. The edge is added to 
the spanning tree. The total 
weight  of edges is 30. The tree 
set is T={(e,f,8), (a,b,10), 
(e,j,12)}
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Kruskal‘s Algorithm Example

(5) Edge (e,k,14 )is extracted 
from the priority queue. It does 
not form a cycle with any of the 
existing edges of the tree. The 
edge is added to the spanning 
tree. The accumulative weight  
of edges is 44. The tree set is
T={(e,f,8), (a,b,10), (e,j,12), 
(e,k,14)}

(6) Edge (h,i,14 )is extracted 
from the priority queue. It does 
not form cycle with any of the  
tree edges. The edge is added to 
the spanning tree. The total 
weight  of edges is 58. The tree 
set is T={(e,f,8), (a,b,10), 
(e,j,12), (e,k,14), (h,i,14)}
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Kruskal’s Algorithm Example
(7) The edge (b,c,15 )is 
extracted from the priority 
queue. It does not form a  cycle 
with any  the tree edges. The 
edge is added to the spanning 
tree. The total weight  of edges 
is 73. The tree set is T={(e,f,8), 
(a,b,10), (e,j,12), (e,k,14), 
(h,i,14), (b,c,15)}

(8) The edge (b, j ,17) is 
extracted from the priority 
queue. It does not form a cycle 
with any of the existing tree 
edges. The edge is added to the 
spanning tree. The total weight  
of edges is 90. The tree set is
T={(e,f,8), (a,b,10), (e,j,12), 
(e,k,14), (h,i,14), (b,c,15), 
(b,j,17)}
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Kruskal’s Algorithm Example

(9) The edge (d,e,18. ) is 
extracted from the priority 
queue. It does not form cycle. It 
is added to the tree. The total 
weight  of edges is 108. The 
tree set is T={(e,f,8), (a,b,10), 
(e,j,12), (e,k,14), (h,i,14), 
(b,c,15), (b,j,17), (d,e,18)}

(10) The edge (f,k,19 ) is 
extracted from the priority 
queue. It forms a cycle with 
edges (k,e,14) and  (e, f,8). The 
extracted edge is shown with 
bold green line in the figure.  
The cycle is identified  by the 
arrows. 
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Kruskal’s Algorithm Example

(11) The extracted edge is 
dropped. It is marked by 
broken line between the 
vertices k and f

(12) The edge (a,j,28) is 
extracted from the priority 
queue. It forms cycle with 
the edges(j,b,17) and 
(b,a,10) which form part of 
the spanning tree. 
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Kruskal’s Algorithm Example

(13) The edge (a,j,28) is 
excluded from the tree. It is 
shown with broken line in 
the figure.

(14) The edge (h,k,29) is 
extracted from the priority 
queue. It does not form a 
cycle with any of the tree 
edges. It is, therefore, added 
to the tree. The total weight  
of edges is 137. The tree set 
is T={(e,f,8), (a,b,10), 
(e,j,12), (e,k,14), (h,i,14), 
(b,c,15), (b,j,17), (d,e,18), 
(h,k,29)}
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Kruskal’s Algorithm Example

(15)The edge (a,i,30) is 
extracted from the queue. It 
forms a cycle with the tree 
edges (i,h,14), (h,k,29), 
(k,e,14), (e,j,12), (j,b,17), 
(b,a,10). The extracted edge 
is shown with bold green line 
in the figure.

(16) The edge (a,i,30) is 
excluded from the tree. It is 
marked with a broken line 
in the figure 
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Kruskal’s Algorithm Example

(17) The edge (j,k,32) is 
extracted. It forms cycle 
with tree edges(k,e,14) and 
(e,j,12). The edge is 
depicted with a bold green 
line in the figure.

(18) The edge (j,k,32) is 
excluded from the 
spanning tree. It is shown 
with broken line in the 
figure
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Kruskal’s Algorithm Example

(19) The edge (h,j,39) is 
extracted from the queue. It 
forms a cycle with the tree 
edges (j,e,12), (e,k,14), 
(k,h,29). The cycle is identified 
by arrows in the diagram

(20) The edge (h, j, 39) is 
excluded from the spanning 
tree configuration. It is 
depicted by broken line in 
the diagram
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Kruskal’s Algorithm  Example

(21) The (c,j,40) is extracted 
from the queue. It forms cycle 
with the tree edges (j,b,17) and 
(b,c,15). The cycle is identified 
by arrows in the figure. The 
extracted edge is shown with 
bold green line

(22)The edge (c,j,40) is 
excluded from the existing 
tree configuration. It is 
shown with broken line in 
the figure
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Kruskal’s Algorithm  Example

(23) The edge (c,d,45) is 
extracted from the queue. It 
forms a cycle with the tree 
edges (d,e,18), ((e,j,12), 
(j,b,17), (b,c,15). The cycle is 
identified by arrows. The 
extracted edge is shown with 
bold green line in the diagram.

(24) The edge (c,d,45) is 
discarded. It is depicted by 
broken line in the figure
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Kruskal’s Algorithm  Example
(25)The edge (g,h,45) is 
extracted from the queue. It 
does not form a cycle with any 
of the tree edges. The edge is 
added to the tree. The total 
weight  of edges is 182.The 
tree set is T={(e,f,8), (a,b,10), 
(e,j,12), (e,k,14), (h,i,14), 
(b,c,15), (b,j,17), (d,e,18), 
(h,k,29), (g,h,45)}

(26)The edge(i,j,47) is 
extracted from the queue. It 
forms a cycle with tree 
edges (j,e,12), (e,k,14), 
(k,h,29), (h,i,14). The cycle 
is marked by the arrows. 
The extracted edge is shown 
with bold green line in the 
figure
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Kruskal’s Algorithm  Example

(27) The edge (i,j,47) is 
dropped. It is marked by a 
dotted line in the figure.

(28) The edge (f,g,50) is 
extracted from the queue. It 
forms a cycle with the tree 
edges (g,h,45), (h,k,29), 
(k,e,14), (e,f,8). The cycle is 
identified by arrows. The 
extracted edge is shown by 
bold green line in the figure
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Kruskal’s Algorithm  Example

(29) The edge (f,g,50) is 
excluded from the tree 
configuration. It is marked by 
dotted line in the figure

(30)The edge (g,k,55) is 
extracted from the queue. It 
forms cycle with the tree 
edges (k,h,29) and (h,g,45). 
The cycle is marked by the 
arrows. The extracted edge 
is shown with bold green 
line
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Kruskal’s Algorithm  Example

(31) The edge (g,k,55) is 
dropped. It is marked by 
dotted line in the figure

(32) The edge (d,j,57) is 
extracted from the queue. It 
forms a cycle with tree 
edges (j,e,12) and (e,d,18).
The cycle is marked by 
arrows. The extracted edge 
is shown with bold green 
line in the figure 
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Kruskal’s Algorithm  Example

(33) The edge(d,j,57) is 
excluded from the tree. It is 
shown with broken line in 
the figure.

(34) After removing the 
edge(d,j,57), the priority 
queue becomes empty.  The 
Kruskal’s algorithm 
terminates.
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Kruskal’s Algorithm 

The Minimum Spanning Tree (MST), generated by the Kruskal’s algorithm, is shown 
below. The dotted lines indicate the edges that are in the sample graph but excluded from 
the MST.  The tree includes all of the vertices in the original graph.  It does not have any 
cycles. The  total weight of  all the tree edges is 182.

Example

45 18

c d e

a j

b

i h

k f

g

10

28

15

30 47 39

14 45

55
29

40
57

12
14

32 19

8

50

17

Dropped edgesMST edges



Graph Algorithms-II / IIU 2008/ Dr.A.Sattar /28

Kruskal’s Algorithm
Implementation 

It follows that the Kruskal’s algorithm is implemented in two phases

(1) Sorting edges in non-decreasing  order

(2) Constructing spanning tree (a sub-graph which has no cycles )

In actual implementation, the edges can be sorted by using an efficient algorithm such as 
Quick sort.  Alternatively, a Priority Queue can be used. The edges are retrieved in  non-
decreasing order by dequeue operation, as shown in the preceding example.

For detection of cycles Union Sets are used
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Kruskal’s Algorithm
Detecting Cycles

To check whether or not an extracted edge forms a cycle, a Union Set can be used. A Union 
Set is defined as  a set of disjoint sets of vertices in a graph

Example : Consider the set of vertices V={a ,b, c, d ,e} in a sample graph. The Union Set  
UV is defined as the set consisting of members  {a}, {b}, {c}, {d}. In set notation UV  can be 
denoted as set of sets,  as under

UV={ {a}, {b}, {c}, {c}, {d}, {e} }

The rule for accepting or discarding an extracted edge is as follows.  Suppose that  an 
edge (u, v) is extracted from a priority queue. Let UV be the Union Set of vertices

(i) If the vertices u, v belong to the same member S of the Union Set UV 
then the edge  (u, v) forms cycle, and discarded

(i) If the vertices u, v belong to two different members, S1 and S2, of the 
Union Set UV  then the edge (u, v)  is accepted. Further, the sets S1 and 
S2 are merged  together to form a single set S  which is placed in the 
Union Set UV
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Detecting Cycles
Example

Suppose at any stage of the execution of Krukal’s algorithm , the UV Union Set  of vertices
consists of members  {a}, {b}, { c, e}, {d} ,i.e UV= { {a}, {b}, {c, e}, {d} } . Consider the 
following possibilities:

(1) Suppose  an edge  (e, d ) is  extracted from the priority queue.  Since vertices e, d
belong to two different members  { c, e} and { d} of UV, the edge (e, d) does not form a cycle. 
The  sets {e, d} and  { d } will be merged into the set { c, d, e} which will replace  the sets    
{ c,e} { d} in the original set UV. Thus, the updated UV would be UV= { {a}, {c, d ,e} }

(2) Assume again that  an edge (c, e) is extracted. Since the vertices  e and d belong to 
the same set {c, d, e} of the UV, the edge (c, e ) will be discarded 

(3) Again, assume  that the edge (a, b) is extracted. Since the vertices a, b belong to 
different sets, the corresponding disjoints set, namely, {a}, {b} will be merged. Thus, the 
updated UV would  be UV={{a, b}, {c, d, e} }.

(4) Next , assume  that edge ( b ,c) is extracted, Since b belongs to {a,b} and c belongs to 
{c, d, e} the sets {a, b} and {c, d, e} would be merged i.e UV={a, b, c, d, e}
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Kruskal’s Algorithm
Using Set for MST  
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Kruskal’s Algorithm 
Implementation

MST-KRUSKAL(G,W)
1 T←φ ►Initialize Minimum Spanning Tree
2 UV←φ ► Initialize Union set UV 
3 for each vertex v      V 
4 do UV ← UV         {v}                           ► Add Vertex sets to union set UV
5 for each (u, v)       E                                   ►Create a priority queue of edges and weights
6 do ENQUEUE(Q,u,v,w)                     ► weights are  keys (priorities)
7 while |UV| >1 do ► Continue until all vertices form a single set of cardinality 1
8 (u, v) ←DEQUEUE(Q)                         ►Remove an edge (u,v) from the queue
9 if u, v belong to different sets US1,US2       UV  
10 then UV ←UV – US1                  ► remove set US1 from UV
11 UV←UV  - US2                  ►remove set US2 from UV
12 UV ←UV     ( US1     US2)  ►Join sets US1 and US2 , add the union to UV
13 T←T     (u, v)                           ►Add the selected edge to the spanning tree
14 return T

∈

U

∈
U

∈

U

Following is pseudo code for Kruskal’s algorithm.. The Union Set UV initially holds  vertices  of the 
graph. The input to the procedure includes a matrix  W of edge weights. A priority queue is created to 
hold the edges and weights. 

Kruskal Visualization

U
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Kruskal’s Algorithm  Visualization 
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Analysis of Kruskal’s Algorithm  

Assume that edges are processed by using  priority queue, graph is represented by linked  
lists, and Union Set is used to detect cycles. The main contributions to the running time are

(1)   Tsort , time to sort edges
(2)   Tini , time to initialize the sets
(3)   Tscan , time to scan linked lists

It was shown earlier that the time to sort n data items, using quick sort is n lg n.  Since edge 
set contains |E| edges,  time to sort edges will be  

Tsort= O(|E|. lg| E|). 
The time for initialization of sets will be 

Tini= O(|V|)., where |V| is number of vertices in the graph
The total time to scan the linked lists representing the graph is equal to number of edges in 
the graph. This time is at most 

Tscan=O(|E|)

Thus, total running time is O(|E|. lg| E|) + O(|E|)+O(|V|). Ignoring |E| compared to |E|.|lg
|E|, the running time for Kruskal’s algorithm is

T kruskal= O(|E|.lg |E|) +O(|V|)

Running Time
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Prim’s Algorithm
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Prim’s Algorithm
Strategy

The Prim’s algorithm is an alternative method for creating minimum spanning tree for
a weighted undirected graph.   Unlike the Kruskal’s algorithm, it makes a systematic 
selection of vertices. It proceeds by choosing some arbitrary initial vertex, and then 
examines all neighbors. It selects the neighbor which has the shortest distance. Next, the 
neighbors of selected vertices are examined for shortest link. This process is continued till 
all the vertices have been explored. The selected shortest links form minimum spanning 
tree.
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Prim’s Algorithm
Procedure

Let V be the vertex set for a graph G. Let T be the minimum spanning tree for G.  The Prim’s
algorithm proceeds as follows:

Step #1: Select some vertex  s  in V , as the start vertex.

Step # 2: Add vertex s to an empty set S. Remove s from  V.

Step # 3: Repeat  Step #:4  through Step #:6  until the set V is empty.

Step # 4: Examine all vertices in  S which are linked to vertices in  V.

Step #5 :Choose the vertex  u in V which has the minimum distance  from vertex v in S.

Step #6:  Remove vertex u from V and add it to S. Move edge (v ,u) to T.
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Prim’s Algorithm 
Example
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In order to study the working of  Prim’s algorithm, consider the weighted undirected graph  
shown in the figure below

The working of algorithm is illustrated by the next set of figures with exploratory notes
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Prim’s Algorithm
Example

(1) Figure shows a sample weighted 
undirected graph. The vertex set for the 
graph is V={a, b, c, d, e, f, g, h, i, j, k}. A set 
S is used  to store vertices, which are  
selected to form minimum spanning tree.  
Another set T is defined to contain the edges 
of minimum spanning tree. Initially, S and T
are empty:   S={}, T={}

(2) First, vertex a is selected for the start of 
Prim’s algorithm. In the figure it is shaded 
red. The selected vertex is removed from set 
V and placed in set S. Thus,
V={ b, c, d, e, f, g, h, i, j, k}
S={a}
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Prim’s Algorithm
Example

(3) Initially, V={ b, c, d, e, f, g, h, i, j, k}
S={a}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→b=10 (minimum)
a→j=28
a→i=30
The minimum distance 10 is from a to b

(4) Vertex b, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (a,b,10) of  MST is placed in 
set T :
V={c, d, e, f, g, h, i, j, k}
S={a, b},  
T= {(a,b,10)}
The total distance so far is10
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Prim’s Algorithm
Example

(5) Initially, V={ c, d, e, f, g, h, i, j, k}
S={a, b}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→j=28
a→i=30
b→j=17
b→c=15 (minimum)
The minimum distance 15 is from b to c

(6) Vertex c, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (b,c,15) of  MST is placed in 
set T :
V={d, e, f, g, h, i, j, k}
S={a, b, c},  
T={(a,b,10), (b,c,15)}
The total distance so far is 25
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Prim’s Algorithm
Example

(7) Initially, V={  d, e, f, g, h, i, j, k}
S={a, b, c}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→j=28, a→i=30
b→j=17 (minimum)
c→d= 45, c→j=40
The minimum distance 17 is from b to j

(8) Vertex j, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (b,j,17) of  MST is placed in 
set T :
V={d, e, f, g, h, i, k}
S={a, b, c, j}  
T={(a,b,10), (b,c,15), (b,j,17)}
The total distance so far is 42
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Prim’s Algorithm
Example

(9) Initially, V={ d, e, f, g, h, i, k}
S={a, b, c, j}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→i=30 ,   c→d= 45,
j→d=57,    j→e=12 (minimum),
j→k=32,   j→i=47,
j→h=39
The minimum distance 12 is from j to e

(10) Vertex e, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (j,e,12) of  MST is placed in 
set T :
V={d, f, g, h, i, k}
S={a, b, c, e, j}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12)}
The total distance so far is 54
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Prim’s Algorithm
Example

(11) Initially, V={ d, f, g, h, I, k}
S={a, b, c, e, j}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→i=30 ,   c→d= 45,
j→d=57,    j→k=32,  
j→i=47,   j→h=39
e→d=18,  e→f=8 (minimum)
e→k=14  
The minimum distance 8 is from e to f
(12) Vertex f, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (e,f,8) of  MST is placed in 
set T :
V={d, g, h, i k}
S={a, b, c, e, f,  j}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12), 
(e,f,8)}
The total distance so far is 62
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Prim’s Algorithm
Example

(13) Initially, V={ d, g, h, i, k}
S={a, b, c, e, f,  j}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→i=30 ,   c→d= 45,
j→d=57,    j→k=32,  
j→i=47,   j→h=39
e→d=18,  f→k=19 
f→g=50,  e→k=14  (minimum) 
The minimum distance 14 is from e to k
(14) Vertex k, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (e,k,14) of  MST is placed in 
set T :
V={d, g, h, i}
S={a, b, c, e, f, j, k}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12), 
(e,f,8), (e,k,14)}
The total distance so far is 76
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Prim’s Algorithm
Example

(15) Initially, V={ d, g, h, i}
S={a, b, c, e, f, j, k}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→i=30 ,   c→d= 45,
j→d=57,    j→i=47,   
j→h=39, e→d=18 (minimum)
f→g=50, k→h=29, k→g=55
The minimum distance 14 is from e to k

(16) Vertex d, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (e,d,18) of  MST is placed in 
set T :
V={ g, h, i}
S={a, b, c, d, e, f, j, k}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12), 
(e,f,8), (e,k,14), (e,d,18)}
The total distance so far is 94
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Prim’s Algorithm
Example

(17) Initially, V={ g, h, i}
S={a, b, c ,d, e, f, j, k}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→i=30 ,  
j→i=47,   j→h=39,
f→g=50, k→h=29 (minimum)
k→g=55
The minimum distance 29 is from k to h

(18) Vertex h, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (k,h,29) of  MST is placed in 
set T :
V={ g, i}
S={a, b, c, d, e, f, h, j, k}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12), 
(e,f,8), (e,k,14), (e,d,18), (k,h,29)}
The total distance so far is 123
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Prim’s Algorithm
Example

(19) Initially, V={ g, i}
S={a, b, c ,d, e, f, h, j, k}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
a→i=30 , j→i=47,
h→i=14 (minimum)
f→g=50, h→g=45
k→g=55
The minimum distance 30 is from k to h

(20) Vertex i, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (h,i,14) of  MST is placed in 
set T :
V={ g}
S={a, b, c, d, e, f, h, i, j, k}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12), 
(e,f,8), (e,k,14), (e,d,18), (k,h,29),(h,i,14)}
The total distance so far is 137
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Prim’s Algorithm
Example

(21) Initially, V={ g}
S={a, b, c ,d, e, f, h, j, k}
The distances of vertices in set S to the 
linked vertices in set V are as follows:
f→g=50, 
h→g=45 (minimum)
k→g=55
The minimum distance 30 is from k to h

(22) Vertex g, which has the minimum 
distance, is selected and placed in set S. 
Thus, The edge (h,g,45) of  MST is placed in 
set T . 
Set V is empty. S={a, b, c, d, e, f, g, h, i, j, k}  
T={(a,b,10), (b,c,15), (b,j,17), (j,e,12), 
(e,f,8), (e,k,14), (e,d,18), (k,h,29), (h,i,14), 
(h,g,45)}.The total distance so far is 182
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Prim’s Algorithm
Implementation

The MST-PRIM method implements Prim’s algorithm for a graph G. A start vertex s is 
passed to the method.
MST-PRIM(G, s)
1 T← φ ► T holds minimum spanning tree
2 S← φ ► S  contains vertices added to the tree
3 S←S      {s}               ► Start vertex is added to S
4 V←V-{s}                ► Start vertex is removed from V
5 while V ≠ φ do
6 d ← ∞  ►d is used to store minimum distance . It is initialized to some very large number
7 for each vertex u     S  do                    ►Select a vertex  u in S
8 for each vertex v       Adj[u] do     ►Examine all vertices which are linked to u
9 if d > w(u,v)                              ► Check if the vertex u has shorter distance
10 then d←w(u,v)              ► If yes, replace d with weight w (u, v)
11 w1← v                   ► store vertex v in w1
12                                  w2 ← u                    ►store vertex u in w2
13 V ←V - {w1}                                         ►remove vertex w1 from V
14 S   ← S    {w1}                                    ►add vertex w1 to S
15 T ←T      {(w1,w2)}                                ►Add edge (w1,w2) to T
16 return T

∈
∈

U

U

U

Prim Visualization
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Prim’s Algorithm Visualization
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Analysis of Prim’s Algorithm  

The while loop in the implementation is executed |V|-1 times, where |V| represents the 
number of vertices in the graph. In each iteration, distances of a given vertex from other 
vertices is explored at most  |V|-1 times, in worst case. Thus, the running time of Prim’s
algorithm is 
T prim = O((|V|-1).(|V|-1))

= O(|V|2)
= O(n2), n being the total number of vertices in the graph.

A more efficient implementation of Prim’s algorithm ( Ref. T.Cormen et al ) uses a min-heap
to extract  an edge with smallest weight from a given vertex. In this case, it can be shown 
that the running time is 
Tprim = O(V lg V + E lg V)

= O(E lg V) 

.

Running Time


